Copied to
clipboard

G = C24.412C23order 128 = 27

252nd non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.412C23, C23.610C24, C22.2862- 1+4, C22.3842+ 1+4, C22⋊C418D4, C23⋊Q848C2, C23.219(C2×D4), C2.66(D46D4), C232D4.25C2, C2.115(D45D4), C23.4Q847C2, C23.11D493C2, C23.23D497C2, C23.10D493C2, (C22×C4).188C23, (C2×C42).661C22, (C23×C4).154C22, C23.8Q8112C2, C22.419(C22×D4), C24.3C2286C2, (C22×D4).245C22, (C22×Q8).189C22, C24.C22138C2, C23.67C2385C2, C2.61(C22.29C24), C2.71(C22.32C24), C23.65C23127C2, C2.C42.316C22, C2.21(C22.56C24), C2.78(C22.36C24), C2.34(C22.53C24), (C2×C4).110(C2×D4), (C2×C4.4D4)⋊29C2, (C2×C4).197(C4○D4), (C2×C4⋊C4).423C22, C22.472(C2×C4○D4), (C2×C22.D4)⋊43C2, (C2×C22⋊C4).276C22, SmallGroup(128,1442)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.412C23
C1C2C22C23C24C23×C4C23.23D4 — C24.412C23
C1C23 — C24.412C23
C1C23 — C24.412C23
C1C23 — C24.412C23

Generators and relations for C24.412C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=f2=b, g2=cb=bc, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, ag=ga, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >

Subgroups: 596 in 274 conjugacy classes, 96 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C4.4D4, C23×C4, C22×D4, C22×Q8, C23.8Q8, C23.23D4, C24.C22, C23.65C23, C24.3C22, C23.67C23, C232D4, C23⋊Q8, C23.10D4, C23.11D4, C23.4Q8, C2×C22.D4, C2×C4.4D4, C24.412C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.29C24, C22.32C24, C22.36C24, D45D4, D46D4, C22.53C24, C22.56C24, C24.412C23

Smallest permutation representation of C24.412C23
On 64 points
Generators in S64
(1 11)(2 16)(3 9)(4 14)(5 62)(6 24)(7 64)(8 22)(10 26)(12 28)(13 25)(15 27)(17 23)(18 63)(19 21)(20 61)(29 37)(30 50)(31 39)(32 52)(33 49)(34 38)(35 51)(36 40)(41 54)(42 46)(43 56)(44 48)(45 57)(47 59)(53 60)(55 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 25)(2 26)(3 27)(4 28)(5 19)(6 20)(7 17)(8 18)(9 15)(10 16)(11 13)(12 14)(21 62)(22 63)(23 64)(24 61)(29 35)(30 36)(31 33)(32 34)(37 51)(38 52)(39 49)(40 50)(41 59)(42 60)(43 57)(44 58)(45 56)(46 53)(47 54)(48 55)
(1 31)(2 32)(3 29)(4 30)(5 53)(6 54)(7 55)(8 56)(9 37)(10 38)(11 39)(12 40)(13 49)(14 50)(15 51)(16 52)(17 48)(18 45)(19 46)(20 47)(21 42)(22 43)(23 44)(24 41)(25 33)(26 34)(27 35)(28 36)(57 63)(58 64)(59 61)(60 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 57 3 59)(2 60 4 58)(5 52 7 50)(6 51 8 49)(9 45 11 47)(10 48 12 46)(13 54 15 56)(14 53 16 55)(17 40 19 38)(18 39 20 37)(21 36 23 34)(22 35 24 33)(25 43 27 41)(26 42 28 44)(29 61 31 63)(30 64 32 62)
(1 28 27 2)(3 26 25 4)(5 45 17 54)(6 53 18 48)(7 47 19 56)(8 55 20 46)(9 10 13 14)(11 12 15 16)(21 43 64 59)(22 58 61 42)(23 41 62 57)(24 60 63 44)(29 34 33 30)(31 36 35 32)(37 38 49 50)(39 40 51 52)

G:=sub<Sym(64)| (1,11)(2,16)(3,9)(4,14)(5,62)(6,24)(7,64)(8,22)(10,26)(12,28)(13,25)(15,27)(17,23)(18,63)(19,21)(20,61)(29,37)(30,50)(31,39)(32,52)(33,49)(34,38)(35,51)(36,40)(41,54)(42,46)(43,56)(44,48)(45,57)(47,59)(53,60)(55,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,25)(2,26)(3,27)(4,28)(5,19)(6,20)(7,17)(8,18)(9,15)(10,16)(11,13)(12,14)(21,62)(22,63)(23,64)(24,61)(29,35)(30,36)(31,33)(32,34)(37,51)(38,52)(39,49)(40,50)(41,59)(42,60)(43,57)(44,58)(45,56)(46,53)(47,54)(48,55), (1,31)(2,32)(3,29)(4,30)(5,53)(6,54)(7,55)(8,56)(9,37)(10,38)(11,39)(12,40)(13,49)(14,50)(15,51)(16,52)(17,48)(18,45)(19,46)(20,47)(21,42)(22,43)(23,44)(24,41)(25,33)(26,34)(27,35)(28,36)(57,63)(58,64)(59,61)(60,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,3,59)(2,60,4,58)(5,52,7,50)(6,51,8,49)(9,45,11,47)(10,48,12,46)(13,54,15,56)(14,53,16,55)(17,40,19,38)(18,39,20,37)(21,36,23,34)(22,35,24,33)(25,43,27,41)(26,42,28,44)(29,61,31,63)(30,64,32,62), (1,28,27,2)(3,26,25,4)(5,45,17,54)(6,53,18,48)(7,47,19,56)(8,55,20,46)(9,10,13,14)(11,12,15,16)(21,43,64,59)(22,58,61,42)(23,41,62,57)(24,60,63,44)(29,34,33,30)(31,36,35,32)(37,38,49,50)(39,40,51,52)>;

G:=Group( (1,11)(2,16)(3,9)(4,14)(5,62)(6,24)(7,64)(8,22)(10,26)(12,28)(13,25)(15,27)(17,23)(18,63)(19,21)(20,61)(29,37)(30,50)(31,39)(32,52)(33,49)(34,38)(35,51)(36,40)(41,54)(42,46)(43,56)(44,48)(45,57)(47,59)(53,60)(55,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,25)(2,26)(3,27)(4,28)(5,19)(6,20)(7,17)(8,18)(9,15)(10,16)(11,13)(12,14)(21,62)(22,63)(23,64)(24,61)(29,35)(30,36)(31,33)(32,34)(37,51)(38,52)(39,49)(40,50)(41,59)(42,60)(43,57)(44,58)(45,56)(46,53)(47,54)(48,55), (1,31)(2,32)(3,29)(4,30)(5,53)(6,54)(7,55)(8,56)(9,37)(10,38)(11,39)(12,40)(13,49)(14,50)(15,51)(16,52)(17,48)(18,45)(19,46)(20,47)(21,42)(22,43)(23,44)(24,41)(25,33)(26,34)(27,35)(28,36)(57,63)(58,64)(59,61)(60,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,3,59)(2,60,4,58)(5,52,7,50)(6,51,8,49)(9,45,11,47)(10,48,12,46)(13,54,15,56)(14,53,16,55)(17,40,19,38)(18,39,20,37)(21,36,23,34)(22,35,24,33)(25,43,27,41)(26,42,28,44)(29,61,31,63)(30,64,32,62), (1,28,27,2)(3,26,25,4)(5,45,17,54)(6,53,18,48)(7,47,19,56)(8,55,20,46)(9,10,13,14)(11,12,15,16)(21,43,64,59)(22,58,61,42)(23,41,62,57)(24,60,63,44)(29,34,33,30)(31,36,35,32)(37,38,49,50)(39,40,51,52) );

G=PermutationGroup([[(1,11),(2,16),(3,9),(4,14),(5,62),(6,24),(7,64),(8,22),(10,26),(12,28),(13,25),(15,27),(17,23),(18,63),(19,21),(20,61),(29,37),(30,50),(31,39),(32,52),(33,49),(34,38),(35,51),(36,40),(41,54),(42,46),(43,56),(44,48),(45,57),(47,59),(53,60),(55,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,25),(2,26),(3,27),(4,28),(5,19),(6,20),(7,17),(8,18),(9,15),(10,16),(11,13),(12,14),(21,62),(22,63),(23,64),(24,61),(29,35),(30,36),(31,33),(32,34),(37,51),(38,52),(39,49),(40,50),(41,59),(42,60),(43,57),(44,58),(45,56),(46,53),(47,54),(48,55)], [(1,31),(2,32),(3,29),(4,30),(5,53),(6,54),(7,55),(8,56),(9,37),(10,38),(11,39),(12,40),(13,49),(14,50),(15,51),(16,52),(17,48),(18,45),(19,46),(20,47),(21,42),(22,43),(23,44),(24,41),(25,33),(26,34),(27,35),(28,36),(57,63),(58,64),(59,61),(60,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,57,3,59),(2,60,4,58),(5,52,7,50),(6,51,8,49),(9,45,11,47),(10,48,12,46),(13,54,15,56),(14,53,16,55),(17,40,19,38),(18,39,20,37),(21,36,23,34),(22,35,24,33),(25,43,27,41),(26,42,28,44),(29,61,31,63),(30,64,32,62)], [(1,28,27,2),(3,26,25,4),(5,45,17,54),(6,53,18,48),(7,47,19,56),(8,55,20,46),(9,10,13,14),(11,12,15,16),(21,43,64,59),(22,58,61,42),(23,41,62,57),(24,60,63,44),(29,34,33,30),(31,36,35,32),(37,38,49,50),(39,40,51,52)]])

32 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4P4Q4R4S4T
order12···222224···44444
size11···144884···48888

32 irreducible representations

dim111111111111112244
type++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2D4C4○D42+ 1+42- 1+4
kernelC24.412C23C23.8Q8C23.23D4C24.C22C23.65C23C24.3C22C23.67C23C232D4C23⋊Q8C23.10D4C23.11D4C23.4Q8C2×C22.D4C2×C4.4D4C22⋊C4C2×C4C22C22
# reps111211111211114831

Matrix representation of C24.412C23 in GL6(𝔽5)

010000
100000
001000
000100
000001
000010
,
100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000010
000001
,
020000
300000
004000
000400
000020
000003
,
100000
010000
002100
002300
000004
000010
,
030000
300000
004000
004100
000030
000003

G:=sub<GL(6,GF(5))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,2,0,0,0,0,1,3,0,0,0,0,0,0,0,1,0,0,0,0,4,0],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;

C24.412C23 in GAP, Magma, Sage, TeX

C_2^4._{412}C_2^3
% in TeX

G:=Group("C2^4.412C2^3");
// GroupNames label

G:=SmallGroup(128,1442);
// by ID

G=gap.SmallGroup(128,1442);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,120,758,723,268,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=f^2=b,g^2=c*b=b*c,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽